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Knowledge graphs (KG) are used for many downstream tasks in artificial intelligence (AI). 
However, owing to accuracy issues associated with information extraction, KGs are often 
incomplete. This has led to the emergence of knowledge graph completion (KGC) tasks. Their 
purpose is to learn known facts to infer the missing entities in triples. Traditional embedding-
based methods usually only focus on the information of individual triples and do not use the 
deep logical relationships of the KG. In this study, we propose a new KGC method referred to as 
QIQE-KGC. It uses quantum embedding and quaternion space interaction to capture the external 
logical relationship between triples in a KG and enhance the connection between entities and 
relations within a single triple to model and represent the KG. The proposed QIQE-KGC model 
can capture richer logical information and has more powerful and complex relationship modeling 
capabilities. Extensive experimental results using QIQE-KGC on 11 datasets demonstrate that the 
model achieves outstanding performance. Compared to the baseline models, QIQE-KGC produced 
the best results on most datasets.

1. Introduction

In 2012, Google proposed the concept of a knowledge graph (KG) [1]. Since then, the KG has played an important role in AI 
services such as question answering [2], semantic search, and recommendation systems [3][4]. However, when building a KG, the 
entities and relationships need to be extracted from a large text corpus. The limitations of natural language processing technology and 
the noise of text data usually affect the accuracy of information extraction to a certain extent. Consequently, real-world knowledge 
graphs are often incomplete. Owing to the incompleteness of knowledge graphs, many downstream AI applications are likely to be 
severely affected. To solve this problem, Knowledge Graph Completion (KGC) [5] has been proposed. Formally speaking, it is also 
known as a link prediction task in a KG environment. The key solution is to predict the correct tail entity 𝑡 when given an incomplete 
triple (ℎ, 𝑟, ?), or predict the correct head entity ℎ when given an incomplete triple (?, 𝑟, 𝑡).
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Fig. 1. Example of knowledge graph architecture.

Traditional KGC models are mainly divided into translation models, such as TransE [6], TransR [7], TransD [8] based on knowl-
edge graph embedding (KGE), network models such as ConvE [9], and KGC models based on natural language processing such as 
KGBert [10], StAR [11], and SimKGC [12]. KGE models assign high scores to valid triples and low scores to invalid triplets in each 
iterative training round. However, they often focus only on independent information inside each triple; that is, any given KG embeds 
the entity and relation into the vector space by statistically calculating the similarity between the entity and the relation. These 
methods ignore the hidden logical dependencies between triples in the KG complex structures. Examples of hidden logical relation-
ships are shown in Fig. 1. Triplet A in (b): Plays alongside (Lionel Messi, Neymar) and Triplet B: Plays alongside (Lionel Messi, Sergio 
Ramos), Triplet C should be reasoned as Plays alongside (Neymar, Sergio Ramos), i.e. 𝐴 ⋂𝐵 ⇒ 𝐶 ; similar logical dependencies are 
also observed in (a): 𝐷𝑒𝑛𝑡𝑖𝑠𝑡 ⇒𝐷𝑜𝑐𝑡𝑜𝑟 ⇒ 𝐶𝑎𝑟𝑒𝑒𝑟. A recent work E2R [13] embeds the symbolic knowledge base into the vector space 
by maintaining the logical structures. This method is inspired by quantum logic theory [14][15] and satisfies the axioms of quantum 
logic. A single fact (i.e., a triple) is treated as an atom, and the connection between different facts is modeled as a complex formula. 
E2R also allows logical operations (e.g., negation, conjunction, disjunction, and implication) to be performed directly on vectors in 
a manner similar to Boolean logic, a process known as quantum embedding.

The structure of a knowledge graph is highly complex and typically encompasses circular, hierarchical, and chained structures, 
as illustrated in Figs. 1(a) and (b). It is difficult to effectively model the KG using single modeling methods. The complex number 
space is used in quantum logic; thus, we considered using the hypercomplex number space to jointly model quantum embeddings. 
Quaternion space was used in QuatE [16] and BiQUE [17], which were combined with interactive quantum embedding for KGC. 
These existing quaternion methods, QuatE, and other models also use the head entity, relation, and tail entity to measure the score of 
the triples in isolation. They were not entirely efficient in capturing the association between different types of head and tail entities. 
For example, in the triplet (𝐿𝑖𝑜𝑛𝑒𝑙𝑀𝑒𝑠𝑠𝑖, 𝑝𝑙𝑎𝑦𝑒𝑑𝑓𝑜𝑟, 𝑃𝑎𝑟𝑖𝑠𝑆𝑎𝑖𝑛𝑡 −𝐺𝑒𝑟𝑚𝑎𝑖𝑛) in Fig. 1 (b), the entity type represented by the head entity 
Lionel-Messi is a person and the entity type represented by the tail entity Paris Saint-Germain is a club. These two entities differ 
greatly in terms of entity attributes, Lionel Messi’s attributes include height and weight, etc. Paris Saint-Germain’s attributes include 
the number of players, staff, etc. If the head entity, relation, and tail entity are used to measure the score of triples in isolation, it will 
increase the noise of the model to a certain extent. Inspired by the two-dimensional planar embedding model [7][8], we enhance 
the representation learning between different types of head and tail entities by adding the Hadamard product rotation operation of 
the head and tail entities under the same relation. The purpose is to pull the head-tail entity representations of triples with different 
attribute types closer but with actual factual associations, to obtain more powerful representation capabilities.

Because KGs are usually composed of hybrid structures such as (a) and (b) in Fig. 1, we propose a joint model QIQE-KGC based 
on the interaction of quantum embedding and quaternion space to solve the above problems. This new KGC method combines the 
excellent modeling ability of entities and relations within triples in the quaternion space and the logical capture ability of quantum 
embedding for deep dependencies between different triples in KGs. Thus, QIQE-KGC interactively performs multi-task learning to 
obtain a more powerful model effect.

The contributions of model QIQE-KGC are summarized as follows:

• To the best of our knowledge, this is the first study that uses quantum embedding of the joint quaternion space for the KGC 
task. It performs multi-task learning through the advantages of interactive quantum embedding and quaternion space; thus, the 
model has a powerful reasoning ability in complex KGs.

• We propose an enhanced method for learning the representations of different types of head and tail entities under the same 
2

relation in the process of quaternion modeling in KGC.
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• Through many experiments on 11 different types of datasets, QIQE-KGC demonstrated good KGC capabilities in most of the 
datasets, with many improvements compared with the original baseline models.

The remainder of this paper is organized as follows. Related studies are introduced in Section 2. In Section 3, we introduce 
the details of the QIQE-KGC model based on the interaction between the quantum embedding and the quaternion. We perform 
experiments and analyze the results in Section 4. A summary of the study and an outlook for the future are presented in Section 5.

2. Related work

For better understanding, we first introduce some common KGC models in Sections 2.1, 2.2, and 2.3, including translation-based 
KGC models, natural language processing (NLP)-based KGC models, and graph neural network (GNN)-based KGC models. Related 
concepts of quantum embeddings and quaternions are introduced in Sections 2.4 and 2.5.

2.1. KGC model based on translation models

As the most classic and widely used series of KGC representation learning methods, translation models perform extremely well 
on KGC tasks. Their core idea is to encode the relation between entities into translation by representing entities as low-dimensional 
embedding vectors. These models define a scoring function for the translation between relations and entities and measure the 
probability of each triplet using a distance metric. Generally, the distance score reflects the accuracy of a triplet.

TransE, as the earliest and most classic translation KGC model, projects entities and relations into a continuous low-dimensional 
vector space, where the tail entity 𝑡 in the triple (ℎ, 𝑟, 𝑡) can be seen as the result of the translation operator between the head entity 
ℎ and the relation 𝑟, i.e., 𝑣ℎ + 𝑣𝑟 ≈ 𝑣𝑡, and defines the relationship with the entity: 𝑠(ℎ, 𝑟, 𝑡) = ‖‖𝑣ℎ + 𝑣𝑟 − 𝑣𝑡

‖‖𝑙1∕2 . However, TransE’s 
assumptions about the translation process are too simple, which will severely limit the ability to model complex relations, causing 
TransE to only model pure one-to-one simple relations in units of KGs. Affected by this, some series of derivative models were 
proposed, such as TransR [7] that projects entities onto a relation-specific hyperplane and performs translation operations on that 
hyperplane to model more complex relations. RotatE [18] uniformly models and infers three relational schemas by introducing 
complex number spaces: symmetric/antisymmetric, inversion, and composition. As most translation-based embedding models for 
KGC do not take into account neighborhood and textual information in KGs, other types of KGC models have been developed to 
compensate for the inadequacy of translation-based models.

2.2. KGC model based on NLP

The NLP-based KGC model, KG-BERT [10], is a new KGC model that was proposed in recent years. It suggests using a pre-trained 
language model for the KGC, where the triples are treated as a sequence of text, taking the entity and relation descriptions of the 
triples as input, and modeling these triples using a language model to compute a scoring function for the triples. NLP-based KGC 
models have been developed, including StAR [11] which combines NLP and translation models and embeds semantic and structural 
information of KGs into the natural language descriptions of triples. Recent research on SIM-KGC [12], introduced contrastive 
learning into the NLP-based KGC model and achieved excellent results on some datasets. However, through careful observation, we 
found that NLP-based KGC models usually perform poorly in datasets with a large number of relationships, such as FB15K-237.

2.3. KGC model based on GNN

In contrast to the translation embedding model and NLP-based KGC model, the GNN-based KGC model uses a GNN as an encoder 
and then uses the traditional neural network-based KGC model ConvE [9]to act as a decoder. GNN-based models typically use a 
encoder-decoder framework to learn the connectivity of the entire KG to better capture its neighborhood information structure. SACN 
[19] introduced GCNs with weights and defined the connection strengths between neighboring nodes with the same relation type 
to capture structured and useful information in KGs using the structure of nodes, attributes of nodes, and different relation types. 
In our previous study, we proposed CLGAT-KGC [20], which introduced a graph attention mechanism and defined an enhanced 
representation of relations in a multi-relational setting and two contrastive learning methods for enhanced representation learning of 
KGs. In addition, some of the other latest work on KG representation learning for recommendation systems [3][4] also uses contrastive 
learning to better learn the representation of entities and relationships in KGs by contrasting positive triples against negative triples. 
In general, the GNN-based KGC model has exhibited performance improvements. However, it has performed consistently at an 
ordinary level in experiments, indicating that there is still significant room for improvement.

2.4. Quantum embedding

Garg et al. proposed a new approach to quantum embedding known as Embed2Reason (E2R) [13], which embeds symbolic 
KGs into vector spaces in a manner that preserves the logical structure and represents each triple as a fact. It was inspired by 
the quantum logic used to explain the mechanisms of quantum mechanics [14], and is essentially an embedding model based on 
algebraic logic. It projects all elements into an identical vector space that contains some constraints from syntax and semantics and 
3

is multi-valued instead of binary as in Boolean logic, precisely so that quantum embeddings will also be more suitable to operate 
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in continuous vector spaces. More formally, quantum embeddings are theoretically compatible with quaternion space embeddings. 
Nevertheless, E2R possesses inherent restrictions, given its sole consideration of the logical information within KGs. Its performance 
decreases when addressing KGs with complex structures, an aspect that we will detail in Section 4.2.3. Moreover, E2R integrates a 
multitude of loss functions, many of which are inapplicable to KGC tasks. Thus, in QIQE-KGC, we propose quantum embedding as 
a task-specific variant, that focuses on binary relations. We used negative sampling methodologies to augment the compatibility of 
quantum embeddings with KGC tasks.

2.5. Quaternion

The quaternion is a system of supercomplex numbers first proposed by Hamilton [21]. Many theories exist regarding the birth 
of quaternions. A familiar explanation is that we know that multiplication between vectors has inner and outer products but both 
operations are imperfect, i.e., the condition of the group is not satisfied. So the problems that cannot be solved in three dimensions 
are mapped to four dimensions, which is the cause and effect of the birth of quaternions. The advantages of processing 3D rotations 
with quaternions over matrices are undeniable. Its applications are in aerospace, game design, animation effects, machine learning, 
and many other fields. Quaternion representation is helpful for augmenting convolutional neural networks for a variety of tasks such 
as image classification and automatic speech recognition [22][23] and KGC [16][17]. Formally, the core motivation behind these 
models is to use quaternions to allow neural networks to encode potential inter and intra-dependencies between multidimensional 
input features, leading to more compact interactions and better representational capabilities.

3. QIQE-KGC model

This study does not consider the deeper quantum logic behind the quaternion and with quantum computation, but is concerned 
with how it powerfully expresses logical relationships algebraically. In this section, we present the proposed QIQE-KGC model in 
detail. The task-oriented quantum embedding module is introduced in Section 3.1, the quaternion space-based module in Section 3.2, 
and the entire model architecture in Section 3.3.

3.1. Task-oriented quantum embedding module

Unlike quantum embedding in E2R, the datasets in the KGC task that we are studying exist in the form of triplets; thus, there 
is no need to consider loss functions for unary relationships. In addition, we used negative sampling to generate negative samples, 
which also addressed the issue of subspace collapse in the E2R. This allowed us to reduce the computational complexity of the model 
without affecting its performance. We refer to this process as task-oriented quantum embedding.

Representation learning In the model, both entities and relations are represented as a 𝑑-dimensional complex vector. e.g., 𝑖
is assumed to be an imaginary unit, and ℂ𝑑 and ℝ𝑑 denote the 𝑑-dimensional complex and real spaces, respectively. Taking the 
triplet (covid-19, subClass, RNA-Virus) as an example, for the entities covid-19 and RNA-Virus, they can be represented by the 
embedding vector as 𝐞𝑐𝑜𝑣𝑖𝑑−19 = 𝐯𝑐𝑜𝑣𝑖𝑑−19 + 𝑖𝐯0 and 𝐞𝑅𝑁𝐴−𝑉 𝑖𝑟𝑢𝑠 = 𝐯𝑅𝑁𝐴−𝑉 𝑖𝑟𝑢𝑠 + 𝑖𝐯0 where 𝐯0 denotes a zero vector of dimension 𝑑. 
In simple terms, the imaginary part of a single entity is zero, but it is non-zero for an entity pair, and these relations will map 
to different linear subspaces. A triple (𝑐𝑜𝑣𝑖𝑑−19, 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠, 𝑅𝑁𝐴−𝑉 𝑖𝑟𝑢𝑠) can be represented as a fact that covid-19 is a subclass of 
RNA-Virus. This binary relationship can be defined as an entity pair: subClass(𝑐𝑜𝑣𝑖𝑑−19, 𝑅𝑁𝐴−𝑉 𝑖𝑟𝑢𝑠). In terms of representation, 
this can be expressed by projecting it into vector space as 𝐑𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠 = 𝐯Covid−19 + 𝑖𝐯RNN−Virus , where 𝐯Covid−19, 𝐯RNN−Virus ∈ ℝ𝑑 are 
entity representations of the entities Covid-19 and RNA-Virus, respectively, relation 𝐑subClass ∈ℂ𝑑 . Consistent with the previous work 
[13][24], the complex vector space of this relation is assumed to be isomorphic to the real space of entities ℝ2𝑑 , which leads to a 
dual mapping relation representation: 𝑇 ∶ℂ𝑑 ↦ℝ2𝑑 . To better understand the representation learning of the model, the KG is defined 
as  = ( , ,  ), where  represents the set of entities,  represents the set of relations, and  represents the set of edges can also 
be understood as an entity pair. The per-entity pair 𝐑𝑟(𝐞ℎ, 𝐞𝑡) denotes that the head entity ℎ to the tail entity 𝑡 is real in the case of 

the relation 𝑟 ∈, then the entity pair can be expressed as 𝐑𝑟 =
(

𝐯ℎ
𝐯𝑡

)
, 𝐑𝑟 ∈  . A single entity 𝐞ℎ, 𝐞𝑡 ∈  can then be represented as 

𝒆ℎ =
(

𝒗ℎ
𝟎2𝑑

)
, 𝒆𝑡 =

(
𝒗𝑡
𝟎2𝑑

)
. Taking subClass(𝐶𝑜𝑣𝑖𝑑−19,𝑅𝑁𝐴−𝑉 𝑖𝑟𝑢𝑠) as an example, it can be expressed as: 𝐑𝑠𝑢𝑏 =

(
𝐯𝐶𝑜𝑣𝑖𝑑−19
𝐯𝑅𝑁𝑁−𝑉 𝑖𝑟𝑢𝑠

)
, 

where the above variables 𝐑𝑠𝑢𝑏, 𝐞𝑐𝑜𝑣𝑖𝑑−19, 𝐞𝑅𝑁𝐴−𝑉 𝑖𝑟𝑢𝑠∈ℝ2𝑑 ; 𝐯𝑐𝑜𝑣𝑖𝑑−19, 𝐯𝑅𝑁𝐴−𝑉 𝑖𝑟𝑢𝑠 ∈ ℝ𝑑 . 𝟎2𝑑 and 𝟏2𝑑 represent the two-dimensional 
vectors containing only 0 and only 1.

Score and loss functions The score function is a quantitative calculation used by the KGC model to predict whether an unknown 
triplet (a fact) is correct or not. Considering that a single fact is considered as an atom and the connection between different facts 
is modeled as a complex logical formula, it is necessary to model this type, according to the orthocomplemented lattice syntax of 
quantum logic [15], where every proposition 𝐩 and its own inverse proposition ¬𝐩 in quantum logic must be mutually orthogonal. 
Thus, in this model, the two complex vectors 𝐩 and ¬𝐩 must satisfy the orthogonal formula: 𝐩 ⋅ ¬𝐩 = 0 and ¬𝑷 = 𝟏2𝑑 − 𝑷 . In more 
formal terms, the more a triplet (a fact) in KG satisfies this orthogonal formula, the higher the score of this triplet should be. It is 
defined as:

( ) ‖( ) ‖2
4

𝑓Quantum 𝐄𝑟 = ‖‖ 𝟏2𝑑 −𝐄𝑟 ⋅𝐄𝑟‖‖ (1)



Information Sciences 648 (2023) 119548L. Li, X. Zhang, Z. Jin et al.

where 𝐄𝑟 represents the entity pair representation of triples, and ‖‖ represents the two-norm. Unlike the models [6][16] that construct 
loss functions based on a distance score function, E2R constructs constraints based on the syntax and semantics of quantum logic as 
a loss function. For the model to predict normal operation, it is necessary to formulate multiple constraints to act as loss functions, so 
there will be several term loss functions, such as logical loss, entity loss, membership loss, and so on. Compared with the E2R model, 
we do not consider the NLP reasoning task but only consider the link prediction task in KGs, and the datasets are all KG data in the 
form of triplets. Thus, a large number of loss functions are unnecessary, so the loss function can be defined for:

Quantum =
∑

(ℎ,𝑟,𝑡)∈{∪′}

(
ELoss +LLoss +MLoss

)
(2)

where  ∪ ′ represents the set of positive samples and negative samples of triplets that have been randomly replaced in [6]; ELoss
represents entity loss, LLoss represents logical relationship loss, and MLoss represents membership loss, all of which are in the 
appendix Eqs. (26)(31)(32).

In addition to the loss function described above, since the datasets are all triples (pairs of entities) and are considered complex 
logical formulas, there is no need to consider the unary universal loss in [13]. Owing to the use of random substitution in the 
negative sampling method, there is no need to consider the subspace collapse problem in previous studies, reducing the overhead of 
the model.

3.2. Quaternion module

The quaternion 𝑄 is an upgraded version of the traditional complex number and is a super complex number. Unlike a complex 
number consisting of a real part and an imaginary part, a quaternion q is composed of a real part and three imaginary parts. Thus, a 
quaternion is usually defined as 𝑞 = 𝑎 +𝑏𝐢 +𝑐𝐣 +𝑑𝐤 ∈ℍ𝑛, where 𝑎, 𝑏, 𝑐, 𝑑 ∈ℝ𝑛, 𝐢, 𝐣, 𝐤 are imaginary units and satisfy 𝐢2 = 𝐣2 = 𝐤2 = 𝐢𝐣𝐤 = −1. 
We begin with some basic symbolic operations on quaternions.
Quaternion parametrization:

|𝑞| =√
𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 (3)

Conjugate operation:

𝑞 = 𝑎− 𝑏𝐢− 𝑐𝐣− 𝑑𝐤 (4)

Quaternion addition:

𝑞1 ± 𝑞2 =
[
𝑎1 ± 𝑎2,𝐯𝟏 ± 𝐯2

]
(5)

Quaternion inner product:

𝑞1 ⋅ 𝑞2 = 𝑎1 ⋅ 𝑎2 + 𝑏1 ⋅ 𝑏2 + 𝑐1 ⋅ 𝑐2 + 𝑑1 ⋅ 𝑑2 (6)

Quaternion normalization:

𝑞⊲(𝑎, 𝑏, 𝑐, 𝑑) = 𝑞|𝑞| = 𝑎𝑟 + 𝑏𝑟𝐢+ 𝑐𝑟𝐣+ 𝑑𝑟𝐤√
𝑎2
𝑟
+ 𝑏2

𝑟
+ 𝑐2

𝑟
+ 𝑑2

𝑟

(7)

Hamilton product:

𝑞1 ⊗𝑞2 =
(
𝑎1𝑎2 − 𝑏1𝑏2 − 𝑐1𝑐2 − 𝑑1𝑑2

)
+
(
𝑎1𝑏2 + 𝑏1𝑎2 + 𝑐1𝑑2 − 𝑑1𝑐2

)
𝐢

+
(
𝑎1𝑐2 − 𝑏1𝑑2 + 𝑐1𝑎2 + 𝑑1𝑏2

)
𝐣

+
(
𝑎1𝑑2 + 𝑏1𝑐2 − 𝑐1𝑏2 + 𝑑1𝑎2

)
𝐤

(8)

The Hamiltonian product of quaternions is not exchangeable and does not satisfy the traditional exchange law of multiplication, 
i.e., 𝑞1 ⊗𝑞2 is not equal to 𝑞2 ⊗𝑞1.

Consistent with the quantum embedding module, the KG is defined as  = ( , ,  ), where  represents a collection of entities, 
and  represents a set of relations, and  represents a set of edges that can also be understood as a triplet set. A triple is expressed as 
(ℎ, 𝑟, 𝑡), where ℎ, 𝑡 ∈  represent the head entity and tail entity respectively, and 𝑟 ∈ represents the relation. We need to represent 
entities and relations as embeddings and compute their scoring function and use the scoring function to measure the prediction score 
of triples.

Existing embedding models obtain triple scoring using a single head entity, tail entity, and relation. There are obvious short-
comings to this method. The ability of the model to capture the representation and feature interaction between triplet entities and 
relations is relatively weak. Because it relies only on the strict calculation of the three embedding vectors, it cannot capture different 
entities under the same relation types of potential dependencies. Inspired by TransD [8] and TransR [7], we propose a method 
to overcome this shortcoming by enhancing the interactive ability of head and tail entities through relation rotation. We use the 
5

representation method in [16] to represent a triplet (ℎ, 𝑟, 𝑡) embedding in the quaternion space; ℎ, 𝑟, 𝑡 are represented as:
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Algorithm 1 The Training Process for link prediction in QIQE-KGC.
Input: Knowledge graph  = ( , ,  ), training set  = (ℎ, 𝑟, 𝑡) ∣ ℎ, 𝑡 ∈  , 𝑟 ∈; batch size 𝑏; learning rate 𝑎; hyperparameter 𝛼 and 𝛽; Epoch number 𝑁 .
Output: Triplet prediction probability score 𝑦̂(⋅)
1: Initialize Quantum logic embedded module: 𝐑ℎ𝑡, 𝐞ℎ, 𝐞𝑡∈ℝ2𝑑 .
2: Initialize Quaternion embedded module: 𝐐𝐡 , 𝐖𝐫 , 𝐐𝐭 ∈ℍ𝑛 .
3: for 𝑛 = 1 →𝑁 do

4: quantum logic embedded model:

5: Obtain Entity Element Loss 𝐸𝐿𝑜𝑠𝑠 with Eq. (23)-Eq. (25)
6: Obtain Logical Relationship Loss 𝐿𝐿𝑜𝑠𝑠 with Eq. (27)-Eq. (31)
7: Obtain Membership Loss 𝑀𝐿𝑜𝑠𝑠 with Eq. (32)
8: Obtain Quantum Embedding Score 𝑓𝑄𝑢𝑎𝑛𝑡𝑢𝑚 with Eq. (2)
9: Quaternion model:

10: Obtain the rotated entity representation 𝐐𝐡 →𝐐𝐫,𝐡 ,𝐐𝐭 →𝐐𝐫,𝐭 with Eq. (14) and Eq. (15)
11: Obtain Quaternion Loss 𝑄𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛 with Eq. (17)
12: Obtain Quaternion Score 𝑓 (ℎ, 𝑟, 𝑡)𝑄𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛 with Eq. (16)
13: QIQE-KGC:

14: Get the total loss of the model by combining the losses of the two parts with Eq. (18)
15: Get the total score of the model by combining the scores of the two parts with Eq. (19)
16: end for

17: Repeat:Training is repeated to get best-predicted value
18: Until:Converges
19: Return:Triplet prediction probability score 𝑦̂⋅

𝐐𝐡 = 𝑎ℎ + 𝑏ℎ𝐢+ 𝑐ℎ𝐣+ 𝑑ℎ𝐤 (9)

𝐖𝐫 = 𝑎𝑟 + 𝑏𝑟𝐢+ 𝑐𝑟𝐣+ 𝑑𝑟𝐤 (10)

𝐐𝐭 = 𝑎𝑡 + 𝑏𝑡𝐢+ 𝑐𝑡𝐣+ 𝑑𝑡𝐤 (11)

where 𝐐𝐡, 𝐖𝐫 , 𝐐𝐭 ∈ℍ𝑛, and 𝑎ℎ, 𝑏ℎ, 𝑐ℎ, 𝑑ℎ ∈ℝ𝑑 ; 𝑎𝑟, 𝑏𝑟, 𝑐𝑟, 𝑑𝑟∈ℝ𝑑 , 𝑎𝑡, 𝑏𝑡, 𝑐𝑡, 𝑑𝑡 ∈ℝ𝑑 .
To solve these problems, we use two quaternion vectors 𝐖𝑟,ℎ, 𝐖𝑟,𝑡 ∈ ℍ𝑛 for each relation to performing the Hadamard product 

rotation operation. It is used to enhance the representation of learning between different types of head-tail entities with the same 
relation. In this way, the representation distance of head and tail entities with different attribute types but actual fact associations 
can be closer:

𝐖𝑟,ℎ = 𝑎𝑟,ℎ + 𝑏𝑟,ℎ𝐢+ 𝑐𝑟,ℎ𝐣+ 𝑑𝑟,ℎ𝐤 (12)

𝐖𝑟,𝑡 = 𝑎𝑟,t + 𝑏𝑟,𝑡𝐢+ 𝑐𝑟,𝑡𝐣+ 𝑑𝑟,𝑡𝐤 (13)

where 𝑎𝑟,ℎ, 𝑏𝑟,ℎ, 𝑐𝑟,ℎ, 𝑑𝑟,ℎ, 𝑎𝑟,𝑡, 𝑏𝑟,𝑡, 𝑐𝑟,𝑡, 𝑑𝑟,𝑡 ∈ℝ𝑑 .
More formally speaking, the Hamilton product is used to rotate the representations of the head entity 𝐐𝐡 and the tail entity 𝐐𝐭

through the normalized vectors 𝐖𝑟,𝐡⊲ and 𝐖𝑟,𝐭⊲ respectively:

𝐐𝐫,𝐡 =𝐐𝐡 ⊗𝐖𝑟, h⊲ (14)

𝐐𝐫,𝐭 =𝐐𝐭 ⊗𝐖𝑟,𝑡⊲ (15)

Our score and loss functions were similar in form to those of QuatE [16]. The core is to use the head entity and relation to execute 
the rotation operation, and then perform the inner product operation with the tail entity to calculate the score function. The specific 
operation is shown in part of Algorithm 1. The correlation of the head and tail entities is enhanced by the formula (14) (15) to 
improve the representation ability of the model. So the scoring of the quaternion module is defined as:

𝑓 (ℎ, 𝑟, 𝑡)Quaternion =
(
𝐐𝐫,𝐡 ⊗𝐖𝐫⊲

)
⋅𝐐𝐫,𝐭 (16)

where ⋅ represents the quaternion inner product. The loss function is defined as:

Quaternion =
∑

(ℎ,𝑟,𝑡)∈{∪′} log
(
1 + exp

(
−𝑡(ℎ,𝑟,𝑡) ⋅ 𝑓 (ℎ, 𝑟, 𝑡)Quaternion

))
in which, 𝑡(ℎ,𝑟,𝑡) =

{
1 for (ℎ, 𝑟, 𝑡) ∈ 

−1 for (ℎ, 𝑟, 𝑡) ∈ ′
(17)

Consistent with the quantum embedding module,  ∪ ′ represents the set of positive samples and negative samples of triplets 
after a random replacement operation similar to [6].

3.3. QIQE-KGC

QIQE-KGC is based on these two basic modules, and its core is to interactively perform multitask learning. It uses KG to represent 
entities and relations through embedding methods of different theories. The model work and training process are summarized in 
the following steps as in Algorithm 1. We first generate spatial embeddings for entity set 𝐸 and relation set 𝑅 in the KG, including 
6

embeddings in quantum space and embeddings in quaternion space. Then QIQE-KGC uses the method of enhancing the correlation 
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Fig. 2. Simple example of QIQE-KGC.

between head and tail entity types to enhance the expression of the head, tail entity, and relation in quaternion space. Finally, in 
order to capture the characteristics of different spaces, the model minimizes the QIQuate−kgc loss function, i.e., minimizing Quantum
and Quaternion loss. Therefore, the model is trained according to the interactive loss function and score function so that it has the 
inference ability to capture the characteristics of the two models at the same time.

The model diagram is shown in Fig. 2. Model interactive multi-task learning plays an important role in capturing both internal 
and external features of elements. In a more formal language, it captures two parts of feature information at the same time. The first 
part is the information on the triplet (a fact) of entities and relations within a single triplet, and the second part is the information on 
the external logical relationship between different triplets. In Fig. 2(b), the representation learning enhancement method of different 
types of head and tail entities under the same relation is abstracted, the purpose is to shorten the distance between 𝐐𝐡 and 𝐐𝐭 distance 
𝑑1 to 𝐐𝐫,𝐡 and 𝐐𝐫,𝐭 distance 𝑑2 (green dotted line). To ensure that the training process can achieve convergence and reasonableness, 
and to realize the multi-task interactive learning of the model, we define the loss function of QIQE-KGC in formula (18) and generate 
negative samples by randomly replacing the head and tail entities [6].

QIQE-KGC (ℎ, 𝑟, 𝑡) = 𝛼Quantum (ℎ, 𝑟, 𝑡) + 𝛽Quaternion (ℎ, 𝑟, 𝑡) (18)

where Quantum and Quaternion correspond to the losses of the task-oriented quantum embedding module and quaternion modules, 
respectively. 𝛼 and 𝛽 are hyperparameters used to adjust the loss balance. These hyperparameters are used to find an appropriate 
loss function scale. The final scoring function of the model is the weighted sum of the quantized scores of the two parts:

𝑓QIQE-KGC (ℎ, 𝑟, 𝑡) = 𝛼𝑓Quantum (ℎ, 𝑟, 𝑡) + 𝛽𝑓Quaternion (ℎ, 𝑟, 𝑡) (19)

where 𝑓Quaternion and 𝑓Quantum represent the scores of the quaternion module and the task-oriented quantum embedding module.

4. Experiments

To evaluate the effectiveness of QIQE-KGC, we conducted extensive large-scale experiments. The detailed experimental settings 
are provided in Section 4.1, along with an analysis of the results of each dataset experiment for the link prediction task and compar-
isons with existing baseline models. In addition, we conducted experimental analyses on the model, including experimental analysis 
7

in environments of transductive and inductive learning, fine-grained relation analysis, model parameter sensitivity analysis, ablation 
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Table 1

Dataset statistics.

Dataset #entity #relation #train #valid #test

Kinships 104 26 8544 1068 1074
UML-S 135 46 5,216 652 661

CN-100K 78,334 34 100,000 1,200 1,200
Atomic 304,388 9 610,536 87,700 87,701

FB15K 14,951 1,345 483,142 50,000 59,071
FB15K-237 14,541 237 272,115 17,535 20,466
WN18 40,943 18 141,442 5,000 5,000
WN18RR 40,943 11 86,835 3,034 3,134
YAGO3-10 123,182 37 1,079,040 5,000 5,000

Wikidata5M-Trans 4,594,485 822 20,614,279 5,163 5,163
Wikidata5M-Ind 4,579,609 822 20,496,514 6,699 6,894

experiments, and computational cost analysis, to show the effect of each module improvement. We present a case study that provides 
a detailed analysis of the proposed model.

4.1. Experiment settings

4.1.1. Datasets

To analyze the effects of the model fully, we used many datasets to conduct link prediction experiments. These include two small 
datasets (Kinships and UML-S), two common-sense KG datasets (CN-100K and Atomic), and five medium-scale datasets (FB15K, 
FB15K-237, WN18, WN18RR, and Yoga3-10). We also used two large datasets (Wikidata5M-Trans and Wikidata5M-Ind). The detailed 
statistics of all datasets are presented in Table 1 and are from [25][12][26]:

- Kinships [25] and UML-S [27]: these two are small datasets, the KinShip [27] dataset is a dataset focusing on traditional 
Australian Aboriginal culture, and the UMLS [28] dataset is a dataset focusing on the relation between healthy living and 
biomedical information.

- CN-100K [28] and Atomic [29] Common KG datasets: Compared with traditional KGs, a common sense KG is slightly different. 
Its nodes are usually composed of more free-text formats and tend to be larger in scale and sparser than traditional KGs. CN-
100K contains general knowledge facts about the world, and the original version includes open-minded common sense from 
ConceptNet. Atomic contains social common sense about current events. The detailed Statistics for these two datasets are shown 
in Table 1.

- WN18, FB15K, YAGO3-10 datasets: YAGO3-10 [30] is a KG based on Wikipedia, which expresses real-world facts and is a subset 
optimized by YAGO. WN18 and FB15K are two datasets composed of WordNet and Freebase respectively, which were proposed 
by Bordes et al. [6]. However, with the continuous utilization of the dataset, some later work [31][9] pointed out that these 
two datasets have problems such as test set leakage and relationship redundancy, and proposed WN18RR and FB15k-237 by 
removing the inverse relationship. They are composed of approximately 41,000 synsets and 11 relations from WordNet and 
approximately 15,000 entities and 237 relations from Freebase.

- Wikidata5M-Trans and Wikidata5M-Ind super-large-scale datasets: Wikidata5M [32] dataset is a dataset containing Wikipedia 
KG data and Wikipedia page data. The scale is much larger than other common datasets, with about 500 million entities and 
20 million triples and more complex. Wikidata5M provides datasets of two schemes: transductive and inductive datasets. For 
Wikidata5M-Ind, all entities in the test set appear in the training set, while for Wikidata5M-Trans, there is no entity overlap 
between the training and test sets.

4.1.2. Evaluation metrics

The evaluation metrics of QIQE-KGC to measure link prediction follow the same evaluation method of the previous work [24][13]. 
They are: MRR, MR, and Hits@N (N=1,3,10), and their calculation formulas are shown in (20)(21)(22).

𝐌𝐑𝐑= 1|𝑆|
|𝑆|∑
𝑖=1

1
rank𝑖

= 1|𝑆|
(

1
rank1

+ 1
rank2

+…+ 1
rank|𝑆|

)
(20)

𝐌𝐑 = 1|𝑆|
|𝑆|∑
𝑖=1

rank𝑖 =
1|𝑆| (rank1 + rank2 +…+ rank|𝑆|) (21)

where S is the set of triples, |𝑆| is the number of sets of triples, and 𝑟𝑎𝑛𝑘𝑖 is the link prediction rank of the i-th triple. The larger the 
MRR metric, the better the model is. The MR metric is just the opposite, the smaller the value, the better the model effect.

1
|𝑆|∑ ( )
8

𝐇𝐈𝐓𝐒@𝑛 = |𝑆|
𝑖=1

II rank𝑖 ⩽ 𝑛 (22)
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Table 2

Experimental results of proposed model performing link prediction on KinShips and UNL-S datasets.

Model KinShips UML-S

MRR MR↓ Hit@1 Hit@3 Hit@10 MRR MR↓ Hit@1 Hit@3 Hit@10

ComplEx [44] 0.838 - 75.40 - 98.000 0.894 - 82.300 - 99.500
NTP−𝜆 [38] 0.800 - 76.000 82.000 89.000 0.930 - 87.000 98.000 1.000

ConvE [9] 0.871 - 79.700 - 98.100 0.957 1.51 93.200 - 99.400
KG-Bert [10] - - - - - - 1.47 - - 99.000
DRGI [41] 0.847 1.9 76.500 91.500 98.100 0.898 1.5 83.800 94.800 98.800
StAR [11] - - - - - - 1.49 - - 99.100
PRANN [36] 0.952 - 91.800 - 98.400 - - - - -
CoPER-CovE [42] 0.895 - 83.620 - 98.420 0.971 - 95.460 - 99.700

QIQE-KGC 0.996 1.21 99.7672 99.7672 99.627 0.9972 1.08 99.697 99.697 99.773

The function II (⋅) utilized here is an indicator function that outputs a value of 1 when the condition is met and 0 otherwise. The 
values of n used in this function are usually 1, 3, or 10. A higher output value from the indicator function indicates better performance 
of the model.

Consistent with the earliest work of KG representation learning [6][24], QIQE-KGC adopts a technique of randomly replacing 
head and tail entities for each triplet used in testing to generate corrupted sample triplets that serve as negative samples for our 
model. These corrupted samples were filtered if they still existed in the triplet set prior to training the model. The trained model 
output the scores for each triplet, which were sorted in descending order to obtain a ranking of the correctly predicted triplets within 
our candidate triplet entities.

4.1.3. Training protocol

Our model code is based on the OpenKE,1 an open-source framework library and E2R [13] quantum logic, and uses PyTorch 
for the specific implementation. The experiments were performed on a Linux-based Nvidia GTX 3090 GPU PC server. The best 
hyperparameters of QIQE-KGC on each dataset were selected using a grid search. These optimal hyperparameters were based on 
MRR and Hits@N. For a comprehensive determination.

4.1.4. Compared model

To demonstrate the superior performance of the QIQE-KGC model on the KGC link prediction task on multiple datasets, and 
considering that different studies used different datasets, we chose the model in the following papers as our baseline models for 
comparison: embedding model baseds on Euler space [6,18,33,34]; models based on neural network and GNN [9,35,20,36,37,26,
32,38,39], which design convolutional neural networks and specific GNNs to realize KGC tasks; models based on NLP and logical 
rule reasoning [11,12,10,40–42]; models that also used quaternion and complex space models [16,43–45,17,46], usually based on 
distance translation function representation operations for KGs; models based on quantum embeddings [13,24].

4.2. Experimental results and analysis

In this subsection, we comprehensively analyze the performance of QIQE-KGC for link prediction using different datasets. The 
superiority of QIQE-KGC is demonstrated through extensive experiments on 11 datasets.

4.2.1. Link prediction experiment results and analysis

The link prediction task results of KGC are presented in Table 2-7. The bold data in each column indicate the optimal results, 
the underline data indicate the suboptimal results; and the “−” symbol indicates that in the relevant original paper, there were no 
experimental results.

Performance Analysis of Link Prediction on Two Small KG Datasets. Table 2 summarizes the comparison of our proposed 
model with the baseline models on the KinShips and UML-S small datasets. The results of the baseline models are all taken from 
the respective original papers. The complexity of these two datasets is not high and the relation is relatively simple, so most of the 
models have shown very good results. For all metrics, our model has achieved the best results in the KinShips dataset and compared 
with other baseline models on the Hits@1 metric, there is a performance improvement of 1%−20%. In the experiment on the UML-S 
data set, the proposed model obtained four optimal results, and the suboptimal result evaluation index Hist@10 metric is also very 
close to the optimal one.

Performance Analysis of Link Prediction on Common Sense KG Datasets. Table 3 summarizes the comparison of our proposed 
model with the baseline models on two common sense KG datasets CN-100K and Atomic. The results of the baseline models were 
obtained from SIM [40], InductiveE [26], and their respective original papers. Compared with the baseline models, we can see clear 
advantages of QIQE-KGC. QIQE-KGC achieved four of the best results in the five metrics on the two datasets. For the CN-100K dataset, 
compared with the existing InductivE, which has the best effect, the MRR, Hits@1, and Hits@10 metrics for our model are increased 
9

1 https://github .com /thunlp /OpenKE.
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Information Sciences 648 (2023) 119548L. Li, X. Zhang, Z. Jin et al.

Table 3

Experimental results of proposed model performing link prediction on Common-Sense KG datasets.

Model CN-100K Atomic

MRR MR↓ Hit@1 Hit@3 Hit@10 MRR MR↓ Hit@1 Hit@3 Hit@10

DistMult [39] 0.106 - - 10.94 22.54 0.123 - - 15.18 18.3
ComplEx [44] 0.115 - - 12.40 20.31 0.142 - - 14.13 15.96
ConvE [9] 0.208 - - 22.91 34.02 0.100 - - 10.29 13.37
RotatE [18] 0.247 - - 28.2 45.41 0.111 - - 11.54 15.60
BiQUE [17] 0.32 - 21.60 35.9 55.3 0.191 - 17.1 19.6 23.00
SIM(1) [40] 0.300 - 21.33 33.46 46.75 0.138 - 11.5 14.44 18.38
SIM(2) [40] 0.511 - 39.42 59.58 73.59 0.103 - 8.41 10.79 13.86
InductivE [26] 0.573 - 64.5 - 78 0.142 - 14.82 - 20.57
CKBC [37] 0.439 169 30.75 51.54 69.34 - - - - -

QIQE-KGC 0.847 3907 84.79 84.79 84.791 0.633 45325 63.36 63.36 63.36

Table 4

Experimental results of proposed model performing link prediction on FB15k and WN18 datasets.

Model FB15K WN18

MRR MR↓ Hit@1 Hit@3 Hit@10 MRR MR↓ Hit@1 Hit@3 Hit@10

TransE [6] 0.463 - 29.70 57.80 74.90 0.495 251 11.30 88.80 89.20
ConvE [9] 0.745 - 67.00 80.10 87.30 0.942 - 93.50 94.70 95.50
RotatE [18] 0.797 40 74.60 83.00 88.40 0.949 309 94.40 95.20 95.90
DistMult [39] 0.654 - 54.60 73.30 82.40 0.822 - 72.80 91.40 93.60
TransGare [33] 0.831 32 75.60 - 91.40 - - - - -
DA-GCN [35] 0.698 - 54.00 77.30 84.80 0.849 - 89.20 95.80 96.60
Rule-IC [47] 0.7732 38 71.78 81.64 88.85 0.888 240 93.76 94.85 96.65
QLogicE [24] 0.969 - 96.90 - 96.9 0.914 - 91.42 - 91.42
E2R [13] 0.960 72 96.40 - 96.4 0.710 5780 71.10 - 71.10

QIQE-KGC 0.981 54 98.06 98.07 98.08 0.979 363 97.99 97.99 97.99

by 47%, 31%, and 8% respectively. Compared with the NLP-based KGC model SIMKGC, the GNN-based CKBC, the translation-based 
embedding model RotatE, and the quaternion-based BiQUE, our model has a very obvious improvement. Compared with the baseline 
optimal model SIM on the Atomic dataset, Hits@10 increased by 173%, and the MRR increased by 231%. However, the performance 
of QIQE-KGC’s MR metrics on the two datasets was not as good as expected. The reason may be that QIQE-KGC usually has an 
excellent ability to find the first ranking, but once the model cannot find the correct answer, the model cannot rank the correct result 
very well. Because of this, the MR of our model will not perform very well in both CN-100K and Atomic, which will be a key point 
that we need to improve in the future. In addition, compared with small datasets, we can clearly see that the performance of our 
model is not so good for common sense KGs. The essential reason is that the common sense KG is more complex and uses more free 
text format to describe nodes, the number of nodes is larger than that of traditional KGs, and the density of triples is sparser, which 
is another challenge in future KGC research.

Performance Analysis of Link Prediction on Traditional Datasets. Tables 4 and 5 summarize the experimental results for 
five traditional datasets. The QIQE-KGC model has very good results on FB15K, FB15K-237, WN18RR, and Yaga3-10. Although the 
performance of the WN18 dataset is not very good, it is still competitive. Compared to E2R [13], which also uses quantum logic 
embedding, the MRR, and MR metrics increased by 30.9% and 527%, respectively. On the FB15K dataset, compared with the baseline 
models, QIQE-KGC obtained three optimal and one suboptimal result for the five metrics. Compared with the E2R and QLogicE [24]
models, which are also based on quantum logic, the MRR was improved by 1.66% and 1.23%; Compared with E2R, the MR metric 
increased by 33%; Compared with the logic rule-based model Rule-IC and the translation-based model RotatE, the Hits@10 metric 
was improved by 10.36% and 10.1% respectively.

It also achieved excellent results for the FB15K-237, WN18RR, and Yoga3-10 datasets. Compared with QLogicE, the MR metrics 
of the three datasets for our model increased by 3.6%, 1.1%, and 4.6%, respectively. Compared with the optimal model SimKGC [12]
based on NLP and contrastive learning, Hits@10 in WN18RR for our model also has a 14.9% improvement, and it has a relatively 
better improvement compared to QuatE [16] BiQUE [17], and DualE [43], which are also based on quaternion space. All these results 
further illustrate the superiority of the QIQE-KGC model.

Performance Comparison of Link Prediction on Large-Scale Datasets. The experimental results of the QIQE-KGC model on 
two large-scale datasets are summarized in Table 6. In general, the experimental results of transductive learning should be better 
than inductive learning because all entities in the Wikidata5M-Transductive test set appear in the training set, while for Wikidata5M-
Inductive there is no entity overlap between the training set and the test set. But what surprised us was that all models performed 
much better on Wikidata5M-Inductive than Wikidata5M-Transductive, which is clearly the opposite of the usual situation. After 
careful study of the dataset, we conclude that Wikidata5M-Inductive has only 201 relations in the test set, while Wikidata5M-
10

Transductive has 822 relations in the test set. Although the entities have appeared in the training set, their representations differ 
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Table 5

Experimental results of proposed model performing link prediction on FB15k-237,WN18RR and YOGA3-10 datasets.

Model FB15K-237 WN18RR YAGO3-10

MRR MR↓ Hit@10 MRR MR↓ Hit@10 MRR MR↓ Hit@10

TransE [6] 0.294 357 46.5 0.226 3384 50.1 0.501 - 67.39
RotatE [18] 0.358 177 53.3 0.476 3340 57.1 0.498 - 67.07
CLGAT-KGC [20] 0.364 160 55.1 0.484 2104 56.6 - - -
QuatE [16] 0.348 87 55 0.488 2314 58.2 - - -
DualE [43] 0.365 91 55.9 0.482 2270 58.4 - - -
BiQUE [17] 0.365 - 55.5 0.504 - 58.8 0.581 - 71.3
MorsE(TransE) [34] - - 96.43 - - 76.46 - - -
Rule-IC [47] 0.355 166 55.2 0.436 3304 54.45 - - -
StAR [11] 0.365 117 56.2 0.551 46 73.2 - - -
ComplEx-SFBR [45] 0.374 - 56.7 0.5 - 58.4 0.584 - 71.3
PRANN [36] 0.66 - - - - - - - -
SimKGC [12] 0.336 - 36.5 0.671 - 81.7 - - -
QLogicE [24] 0.949 - 94.89 0.928 - 92.79 0.937 - 93.74

QIQE-KGC 0.984 17 98.5659 0.9391 946 93.9056 0.981 1035 98.19

Table 6

Experimental results of proposed model performing link prediction on super large scale datasets.

Model Wikidata5M-Trans Wikidata5M-Ind

MRR MR↓ Hit@1 Hit@3 Hit@10 MRR MR↓ Hit@1 Hit@3 Hit@10

TransE [6] 0.253 - 17.0 0.311 39.2 - - - - -
RotatE [18] 0.29 - 23.4 32.2 39.0 - - - - -
KEPLER-Wiki [32] 0.154 14454 10.5 17.4 24.4 0.351 32 15.4 46.9 71.9
KEPLER-Cond [32] 0.210 20267 17.3 22.4 27.7 0.402 28 22.2 51.4 73.0
SimKGC-I [12] 0.353 - 30.1 37.4 44.8 0.603 - 39.5 77.8 92.3
SimKGC-I+P [12] 0.354 - 30.2 37.3 44.8 0.602 - 39.4 77.7 92.4

SimKGC-I+S [12] 0.356 - 31.0 37.3 43.9 0.713 - 60.7 78.7 91.3
SimKGC-I+P+S [12] 0.358 - 31.3 37.6 44.1 0.714 - 60.9 78.5 91.7

QIQE-KGC 0.657 882254 65.065 65.064 65.064 0.906 35810 90.587 90.587 90.587

significantly across different triplets. In addition, the complexity of the relations in the test set of Wikidata5M-Inductive is much 
lower than that of Wikidata5M-Transductive, which explains the infrequent occurrences observed in Table 6.

From Table 6, in the comparison between QIQE-KGC and the baseline models on the Wikidata5M-Trans dataset, four of the five 
metrics have achieved the best performance and there are 81.5% and 47.3% higher than the MRR and Hits@10 metrics of SimKGC, 
respectively. However, the performance of the Hits@10 metric on Wikidata5M-Ind is slightly lower than that of SimKGC. This may be 
because the NLP-based KGC model SimKGC has a better generalization ability for entities that appear in the training set after adding 
text information. As we can see from the previous NLP-based KGC models [10][11], their experimental results in a less-relational 
environment are indeed excellent.

Summary 1. The effectiveness of QIQE-KGC was demonstrated in the link prediction experiments; and it has certain advantages 
for all kinds of KGC models, especially for the quantum embedding-based models E2R, QLogicE, and the quaternion space-based 
models QuatE, BiQUE, DualE, all of which have very considerable improvement. This shows that our model does indeed combine 
the excellent triadic modeling ability of quaternion space with the logical capture of deep dependencies in the KG by quantum 
embedding, and then interactively perform multi-task learning to obtain more powerful model results. In addition, we should also 
note that the model is not particularly good for MR metrics and the values of Hits@1 and Hits@3, and Hits@10 in the quantum 
logic-based models E2R [13] and QLogicE [24] are somewhat approximate but not exactly consistent. We explain this intuitively 
in Section 4.3 through a case study. When QIQE-KGC does not predict the correct result, the model tends to rank the result of the 
correct option at a lower position. In calculation formulas (20) and (21) for MRR and MR, we can clearly see that when there are 
many triplets with a large 𝑟𝑎𝑛𝑘𝑠 value, the MR metric will become very large, while the impact on the MRR metric is relatively small. 
Thus, MRR is usually regarded as a good indicator in the KGC task; MR is used as an indicator to measure the degree of fluctuation 
in the model’s predicted value.

4.2.2. Fine-grained analysis

To understand which types of relations QIQE-KGC performs better in actual modeling, we conducted fine-grained experiments, 
demonstrating the performance of QIQE-KGC in different conditions. We used the KG dataset WN18RR for the experiments. Table 7
presents the MRR metric performance of each relation for WN18RR. QIQE-KGC achieved outstanding results for most relation types, 
although it did not perform well in 𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑡𝑜, 𝑣𝑒𝑟𝑏𝑔𝑟𝑜𝑢𝑝, and other relations. We believe these relation types account for no more 
than 1.5% of the triples in the entire KG dataset, which is very small, and 𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑡𝑜 relation only accounts for 0.09%. However, 
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the improvement in hierarchical logic relations and tree structure logic relations (ℎ𝑦𝑝𝑒𝑟𝑛𝑦𝑚 and 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 ℎ𝑦𝑝𝑒𝑟𝑛𝑦𝑚) is very good 
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Table 7

Experimental results of the proposed model performance of fine-grained relation effects on WN18RR.

Relation_Name RotatE QuatE BiQUE Ours

hypernym 0.154 0.172 0.306 1.000

instance_hypernym 0.324 0.362 0.602 1.000

member_meronym 0.255 0.236 0.453 1.000

synset_domain_topic_of 0.334 0.395 0.539 0.544

has_part 0.205 0.210 0.392 1.000

member_of_domain_usage 0.277 0.372 0.563 0.333
member_of_domain_region 0.243 0.140 0.500 0.038
derivationally_related_form 0.957 0.952 0.970 1.000

also_see 0.627 0.607 0.750 0.001
verb_group 0.968 0.930 0.974 0.001
similar_to 1.000 1.000 1.000 0.001

Table 8

Results of ablation experiments with FB15K, WN18RR, and FB15K-237 datasets.

FB15K FB15K-237 WN18RR

MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

E2R 0.964 96.400 96.400 0.584 58.400 58.400 0.477 47.700 47.700
QuatE 0.808 75.100 89.600 0.367 26.900 56.300 0.493 43.900 59.200
QIQE-KGC∗ 0.971 97.110 97.214 0.957 95.712 95.712 0.9291 92.901 92.901
QIQE-KGC 0.981 98.067 98.067 0.984 98.480 98.565 0.939 93.905 93.905

compared to the QuatE and BiQUE models of pure quaternion space, which shows that our idea of interaction between quantum 
logic and quaternion space is feasible and very effective. Overall, these fine-grained analysis results, show our proposed scenario, 
effectively improving the model and achieving excellent performance.

4.2.3. Ablation study and computational costs analysis

To further enhance the understanding of the effectiveness of each module of QIQE-KGC, we conducted ablation experiments. 
The experimental results are presented in Table 8; the results of E2R [13] and QuatE [16] are from the original papers. QIQE-
KGC∗ represents an incomplete model that did not use head-tail entity-type correlation enhancement methods. The MRR metrics on 
FB15K, FB15K-237, and WN18RR datasets increased by 1.13%, 2.82%, and 1.07% respectively through the method of head-tail entity 
correlation enhancement. Experiments show that our head-tail entities correlation enhancement method can actually enhance the 
interaction ability of the head and tail entities to improve the effectiveness of the model. In addition, QIQE-KGC, after learning the 
interaction between quantum embedding and quaternion space, compared with the simple quaternion space model QuatE and E2R, 
has improved the MRR metric by 21.41% and 1.7% respectively in FB15K. On the other two datasets, an astonishing two-fold effect 
is achieved, which strongly proves that our proposed KGC model based on the interaction of quantum embeddings and quaternion 
space is very effective.

Through the ablation study, we can further discover the limitations of E2R. When dealing with more complex datasets (FB15K-
237/WN18RR), the performance of E2R is obviously poor. QIQE-KGC combines quantum embedding with quaternion space, ob-
taining the excellent modeling capabilities of entities and relations within triplets in quaternion space and logical capture of deep 
dependencies between different triplets in KGs by quantum embedding. This effectively addresses the shortcomings of E2R and yields 
impressive results.

To further analyze the computational cost of the models, we compared the training time of E2R and QIQE-KGC on two public 
datasets (FB15K, WN18). We set identical parameters and conducted the experiments on the same PC server. As shown in Fig. 3, 
the training time required for QIQE-KGC on both datasets was longer than that of E2R, which is very reasonable and in line with 
expectations. To some extent, we sacrificed time complexity to achieve better performance. The incorporation of the quaternion 
module enables the model to handle more complex triple relationships and achieve better results. However, it also introduces 
additional computational costs. In the future, we will consider how to shorten the time required for model training while maintaining 
excellent model results.

4.2.4. Parameter sensitivity experiment

To explore how well the model responds to parameter sensitivity, as shown in Fig. 4, we analyzed the ratio of the quantum 
embedding module to the quaternion module in the loss function on two small datasets KinShips and UML-S. The ratio of the model 
on MR and Hits@10 shows that the lower the MR metric, the better the model effect, and the higher the Hits@10, the better the 
effect. Combining the MR and Hits@10 metrics in Fig. 4, we find that when 𝛼 ∶ 𝛽 is close to 1:1 and the loss weight for the two 
modules is similar, the model obtains better results, which confirms that both modules are important. In addition, Fig. 4 also shows 
that the model will not cause large fluctuations in the effect of the model with slight fluctuations in parameters, which shows the 
12

robustness of our model.
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Fig. 3. Computational costs of FB15K and WN18 datasets.

Fig. 4. The results of parameter sensitivity experiments on the Kinship and UML-S datasets.

4.3. Case study

To better understand the QIQE-KGC model, several examples are provided to demonstrate how the model works and its practical 
effects. Fig. 5 shows case studies in the UML-S dataset with four correct and incorrect predictions. In the experiment, the entities 
and relationships were formed into a mapping ID and stored in the mapping file. The cases in the figure show the intuitive results 
obtained after parsing the file. As shown in Fig. 5, to predict a tail entity, the head entity, and the relation are embedded in a known 
feature vector to find the possible correct tail entity in the form of (ℎ,𝑟,?). In the entire test set, all entities except the head entity 
appear in predicates as potential candidate entities. When the model runs and receives the input ℎ and 𝑟, scores are calculated for 
all candidate entities and ranked. The missing tail entities are predicted perfectly in triplets 1, 2, and 3. This also implies that the 
respective correct tail entity ranks first in the set of prediction candidates.

Triple 4 also successfully predicts the correct missing head entity. Similar to predicting the tail entity, after receiving the input 𝑟
and 𝑡, the model considers all entities in the entire test set as candidates except the tail entity itself. Then the model will give all the 
scores and ranks of candidate entities.

To explain why Hits@1≈Hits@3≈Hits@10 in the QIQE-KGC model evaluation metrics, Triples 5 and 6 are selected and analyzed 
as the prediction errors in the experiment. As shown in Fig. 5, the correct tail entity is ranked at 64 in Triples5, when predicting 
the tail entities in the form of triple(laboratory_procedure, analyzes,?). Similarly in Triples6, the correct candidate triples are ranked 
at 24, when predicting the triple (?, property_of,family_group). That is the explanation why our Hits@1≈Hits@3≈Hits@10 values. 
13

The correct candidate is usually ranked first when the model is able to predict the missing head and tail entities in the triplet. 
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Fig. 5. Case study example of UML-S dataset.

Correspondingly, the model usually ranks the correct candidate more towards the bottom than the top 10, when the model does not 
have the ability to predict the missing head or tail entities.

5. Conclusions and future research

In this study, we proposed a knowledge graph completion model QIQE-KGC based on the interaction of quantum embeddings 
and quaternion space. By jointly capturing the internal semantic information structure of individual triplets and the external deep 
logical structure between different triplets in a KG, QIQE-KGC achieves excellent performance on numerous datasets. Our proposed 
method of enhancing the correlation between head-tail entity types in relations also contributes to more comprehensive modeling in 
quaternion space. However, the performance of our model on ultra-large-scale KGs and commonsense KGs is still not satisfactory. In 
the future, we will consider improving these two modules to extend our model and make it more robust. In addition, we will deeply 
study MR metrics and improve the performance of the model on MR metrics in the future.

In recent years, Multimodal Knowledge Graphs (MKGs) [48][49] have been gradually gaining popularity as a novel method 
for knowledge representation. MKGs extend the traditional entities and relations encapsulated in conventional KG, incorporating 
different modalities of information such as text, images, and audio. MKGs organize and integrate diverse types of information 
sources in a structured manner, offering a new perspective and methodology for complex information processing and understanding. 
We perceive the tasks pertaining to MKG completion [50] as compelling areas of investigation. Thus, our future research agenda 
aims to explore the study of representation learning in the context of MKGs.
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Appendix A

In the quantum embedding module, we use the basic idea in the previous work [13], abandoning the regularization loss term and 
the unary relationship loss term.

The loss function of the entity element loss 𝐸𝐿𝑜𝑠𝑠 is contained as:

𝐿𝐸𝑖
=
‖‖‖‖‖𝒆𝑖 ⊙

(
𝟎𝑑
𝟏𝑑

)‖‖‖‖‖
2

(23)

where ⊙ means element-wise multiplication.
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− 1
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(
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𝑖

(
𝟏𝑑
𝟎𝑑

)
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)})2

(24)

where 𝐿𝑅𝑖
represents the binary relationship loss function, 𝛾𝑖 represents the metric vector as a learnable parameter, and the value of 

the function min{0, 𝑥} is not less than 0.

𝐿𝛾𝑖
= ‖‖𝛾𝑖 ⊙ 𝛾𝑖

‖‖2 (25)

In order to ensure that the metric vector works normally, the 𝐿𝛾𝑖
loss function is used to constrain enforcement.

𝐸𝐿𝑂𝑆𝑆 =𝐿𝐸𝑖
+𝐿𝑅𝑖

+𝐿𝛾𝑖
(26)

The loss function of the logical loss 𝐿𝐿𝑜𝑠𝑠 is important, they contained logic inclusion, logic conjunction, logic disjunction, and logic 
negation. According to the quantum logic embedding in [13], the logic inclusion loss term of binary relationship form is:

𝐿𝑅𝑖⊑𝑅𝑗
= ‖‖‖𝜸𝑖 ⊙ 𝜸𝑗

‖‖‖2 (27)

According to the quantum logic embedding in [13], the logic conjunction loss term of binary relationship form is:

𝐿(
𝑅𝑖=𝑅𝑗⊓𝑅𝑘

) = ‖‖‖𝜸𝑖 − (
𝜸𝑗 ⊙ 𝜸𝑘

)‖‖‖2 (28)

According to the quantum logic embedding in [13], the logic disjunction loss term of binary relationship form is:

𝐿(
𝑅𝑖=𝑅𝑗⊔𝑅𝑘

) = ‖‖‖𝛾𝑖 −max
(
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)‖‖‖2 (29)

According to the quantum logic embedding in [13], the logic negation loss term of binary relationship form is:
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The logical loss function can be understood as the sum of the above loss functions.
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According to the quantum logic embedding in [13], the membership loss term is constructed from the remaining length of the 
projection. The membership relationship here is actually a multi-hop relationship, which means that the model learns their features 
through the loss term by projecting this relationship into the vector space.
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